Abstract

To consistently disinfect fresh vegetables efficiently, the decay of disinfectants such as chlorine, electrolyzed oxidizing water (EOW), ozonated water, and plasma-activated water during the disinfection maintenance stage needs to be understood. The aim of our study was to evaluate the changes in the inactivation kinetics of slightly acidic electrolyzed water (SAEW) against human norovirus (HuNoV), based on the cabbage-to-SAEW ratio. After disinfection of fresh cabbage with disinfected SAEW solution, SAEW samples were collected and analyzed for physicochemical properties such as pH, available chlorine concentrations (ACCs), and oxidation-reduction potential (ORP). SAEW virucidal effects were evaluated. We confirmed the decay of post-disinfection SAEW solution and demonstrated the different patterns of the decay kinetic model for HuNoV GI.6 and GII.4. In addition, the goodness of fit of the tested models based on a lower Akaike information criterion, root-mean-square error (RMSE), and residual sum of squares (RSS) was close to zero. In particular, the change in both the HuNoV GI.6 and GII.4 inactivation exhibited a strong correlation with the changes in the ACC of post-disinfection SAEW. These findings demonstrate that physicochemical parameters of SAEW play a key role in influencing the kinetic behavior of changes in the disinfection efficiency of SAEW during the disinfection process. Therefore, to optimize the efficiency of SAEW, it is necessary to optimize the produce-to-SAEW ratio in future studies.

Highlights

  • The food industry has recognized the importance of hygiene practices and has established optimized processes to ensure food safety

  • We investigated whether the ratio of fresh cabbage loaded to the fixed volume of Slightly acidic electrolyzed water (SAEW) affected the physicochemical characteristics of SAEW

  • When the cabbage/SAEW ratio was 0.3, FIGURE 2 | Changes in the pH, oxidation-reduction potential (ORP), and available chlorine concentrations (ACCs) of SAEW sampled after disinfection and washing fresh cabbages

Read more

Summary

Introduction

The food industry has recognized the importance of hygiene practices and has established optimized processes to ensure food safety. SAEW treatment with low available chlorine concentrations (ACCs), usually approximately 30 mg/L (the acceptable range is between 10 and 80 mg/L), and a pH value between 5.0 and 6.0, has been gaining attention as a disinfectant in the food industry to remove pathogenic bacterial populations on food-contact surfaces or food products (Suzuki et al, 2005). Rahman et al (2013) and Wang et al (2014) demonstrated that SAEW treatment can be utilized to disinfect fresh shrimp and pork. Based on these experimental results, the United States Environmental Protection Agency (EPA) has approved the use of EW generators for disinfection in the food processing field. The Japanese Ministry of Health, Labor and Welfare has authorized EW as a food additive to reduce pathogenic microbial populations in various foods, food contact surfaces, and food processing surfaces

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call