Abstract

ABSTRACTIn previous work it has been shown that doping of silicon with P or As leads to enhanced rates of grain growth while doping with B has little effect, except in compensation of the effect of P or As. Here we report a detailed study of the effects of P doping on normal grain growth in silicon films. We also outline a kinetic model for grain growth which is consistent with the various observed effects of dopants. This model is based on the assumption that dopants primarily affect grain boundary mobilities and that grain boundary motion occurs through parallel diffusive and non-diffusive processes. It is further assumed that the rate of the diffusive process is proportional to the vacancy concentration which is a known function of the electron concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call