Abstract
AbstractWe describe the development of a kinetic model for the simulation and optimization of an in vivo redox cascade in E. coli in which a combination of an alcohol dehydrogenase, an enoate reductase, and a Baeyer–Villiger monooxygenase is used for the synthesis of lactones. The model was used to estimate the concentrations of active enzyme in the sequential biotransformations to identify bottlenecks together with their reasons and how to overcome them. We estimated adapted Michaelis–Menten parameters from in vitro experiments with isolated enzymes and used these values to simulate the change in the concentrations of intermediates and products during the in vivo cascade reactions. Remarkably, the model indicated that the fastest enzyme was rate‐determining because of the unexpectedly low concentration of the active form, which opens up reversible reaction channels towards byproducts. We also provide substantial experimental evidence that a low intracellular concentration of flavin and nicotinamide cofactors drastically decreased the performance of the in vivo cascade drastically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ChemCatChem
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.