Abstract

Collective behavior of compressible gas bubbles moving in an inviscid incompressible fluid is studied. A kinetic approach is employed, based on an approximate calculation of the fluid flow potential and formulation of Hamilton's equations for generalized coordinates and momenta of bubbles. Kinetic equations governing the evolution of a distribution function of bubbles are derived. These equations are similar to Vlasov's equations. Conservation laws which are direct consequences of the kinetic system are found. It is shown that for a narrowly peaked distribution function they form a closed system of hydrodynamical equations for the mean flow parameters. The system yields the analogue of Rayleigh–Lamb's equation governing oscillations of bubbles. A variational principle for the hydrodynamical system is established and the linear stability analysis is performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call