Abstract

The coke drum is the main reactor of the delayed coking process, in which the deep-severity thermal reaction of heavy oil takes place. To simulate the product distribution in this reactor, a kinetic model for the deep-severity thermal reaction was developed on the basis of the experimental data of a vacuum residuum in a microbatch reactor at 430–490 °C. The model-predicted results agree well with the experimental values. The ratio of the cracking gas/light distillate rate constant increases with the reaction temperature. Both the primary condensation/cracking rate constant and the secondary condensation/cracking rate constant increase with the reaction temperature. It means that the lower reaction temperature is advantageous to increase the distillate yield at the same reaction severity. Furthermore, a practical transformation method was presented to improve the suitability of this model. The comparison results indicated that this transformation method is available for the kinetic model in this research. ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.