Abstract

Nanosized barium titanate powders were synthesized by a hydrothermal method. The effect of titania precursors on the phase transition of BaTiO3 with respect to Ba/Ti ratio, reaction temperature, reaction time, and calcination temperature was investigated. The synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. BaTiO3 in pure cubic phase with spherical morphology was observed with a lower calcination temperature, Ba/Ti ratio, reaction temperature, and time. Increase in the tetragonal phase was ascertained in treatments at higher reaction temperature with a longer reaction time. The lattice hydroxyl release is believed to be the reason for tetragonality at high reaction and calcination temperatures. To prepare tetragonal BaTiO3 using HClO4-TiO2, the optimum synthesis conditions viz., Ba/Ti ratio, reaction temperature, and reaction time, are 1.2, 160 °C, and 3 h, respectively, at a calcination temperature of 1150 °C. The reaction time and reaction temperature for the cubic−tetragonal phase transformation of BaTiO3 shifted toward shorter reaction time and lower reaction temperature when TiO2 was synthesized by hydrolysis using HClO4 as the acid catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call