Abstract
A kinetic flow model to determine the behavior of aerosol droplets injected into a high-temperature gas environment is presented. Droplet heating, desolvation, coalescence, and transport are considered. The desolvation rate of droplets is calculated with a continuum heat transfer and a mass-loss model that uses the Fuks correction to account for kinetic effects. Droplet transport is modeled with the Cunningham slip flow correction factor applied to Stokes’s law. The direct simulation Monte Carlo method is used to model droplet‐droplet collisions, with the collision outcome determined with the use of the Ashgriz‐Poo coalescence model. The developed computational tool is applied to the simulation of droplet evolution in a spatially uniform background gas and that of an argon inductively coupled plasma (ICP). We find that consideration of transitional regime effects reduces the desolvation rate and the droplet drag. In addition, the simulation shows that droplet coalescence leads to a significant increase in the penetration depth of the aerosol even into a high-temperature ICP environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.