Abstract
We present a kinetic model for the optical output degradation of light-emitting diodes based on the carrier-recombination enhanced defect motion. Our model leads to analytical solutions and universal curves for the optical output power and the defect density as a function of the normalized aging time with the initial quantum efficiency as the determining parameter. The theoretical results explain very well the time dependence of the II-VI light-emitting diodes under constant current aging condition. The faster aging rate with increasing bias current or temperature is also investigated both experimentally and theoretically, resulting in a very good agreement. Our model provides a quantitative description of the light-emitting diode aging characteristics for compound semiconductors in the presence of electron-hole recombination-enhanced defect generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.