Abstract
The kinetics of vibrationally excited OH(ν = 1) and OH(ν = 2) radicals was studied by time-resolved laser absorption in the overtone IR region. Two DFB laser diodes, 1509.3 and 1589 nm, were used. The technique allowed for the reliable study of the vibrational relaxation kinetics as well as the relative populations of the vibrationally excited states. The yields of OH(ν = 1) and OH(ν = 2) in the reaction O(1D) + H2O were determined. The rate constant of OH(ν = 1) relaxation in collision with water molecules was obtained ((9.2 ± 2.0) × 10−12 cm3/s). The dynamics of OH(ν = 1) and OH(ν = 2) populations were analyzed in detail, which made it possible to separately determine the relative contribution of the vibrational ladder relaxation channels OH(ν = 2) → OH(ν = 1) → OH(ν = 0) and the direct relaxation OH(ν = 2) → OH(ν = 0).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have