Abstract
Cavity ring-down spectroscopy (CRDS) was employed to investigate the kinetics of the reaction between phenyl radicals (C6H5•) and ethyl acetate (EtOAc) in the gas phase. Nitrosobenzene (C6H5NO) was used as the radical precursor to generate C6H5• at 248 nm, and the generated radicals were subsequently probed at 504.8 nm. The rate coefficients were investigated experimentally in the temperature range of 258-358 K with an interval of 20 K and at a total pressure of 55 Torr in the nitrogen atmosphere. The obtained Arrhenius expression for the title reaction (C6H5• + EtOAc) in the temperature range of 258-358 K was kphenyl + EtOAcExpt - (258 - 358 K) = (9.33 ± 0.11) × 10-16 exp[(883.7 ± 181.0)/T] cm3 molecule-1 s-1, and the rate coefficient at room temperature (298 K) was kphenyl + EtOAcExpt - 298 K = (2.20 ± 0.12) × 10-14 cm3 molecule-1 s-1. Negligible effects of pressure and photolysis laser fluence were found on the experimentally measured rate coefficients. To complement our experimental findings, rate coefficients of the title reaction were computationally investigated employing the canonical variational transition-state theory with small curvature tunnelling (CVT/SCT) at the CCSD(T)/cc-pVDZ//B3LYP/6-31+G(d,p) level of theory in the temperature range of 200-400 K. The temperature-dependent rate coefficient in the studied temperature range was obtained to be kphenyl + EtOAcTheory - (200 - 400K) = (7.68 ± 0.12) × 10-17 exp[(1731.6 ± 216.0)/T] cm3 molecule-1 s-1, and the rate coefficient at 298 K was obtained as kphenyl + EtOAcTheory - 298K = 2.45 × 10-14 cm3 molecule-1 s-1. Both the experimentally measured and computed rate coefficients show good agreement at 298 K. A negative temperature dependency was observed for both the experimentally measured and computed rate coefficients. A detailed discussion of the thermochemical parameters and branching ratios of the title reaction are also presented in this Article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.