Abstract

Kinetics of the reaction of IO radicals with methanol (MeOH) and ethanol (EtOH) were experimentally studied in the gas phase using pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS). IO radicals were produced in situ at the reaction zone by photolysing a mixture of precursors (CH3I + O3 + N2) at 248nm and thereby electronically excited at 445.04nm. The rate coefficients for the reactions of (IO + MeOH) and (IO + EtOH) were measured at a total pressure of 60Torr/N2 in the range of 258-360K. At room temperature, the experimental rate coefficients of the title reactions were measured to be [Formula: see text] and [Formula: see text]. Dependencies of the kinetics with photolysis laser fluence and experimental pressures were verified. Effects of pressure over the kinetic behaviour of the studied systems were observed to be insignificant within the statistical uncertainties when studied in the range of ~ 30-150Torr/N2, whereas a minor and linear fluence dependency was observed within the studied limit. From the measured kinetic parameters, the atmospheric lifetimes of MeOH and EtOH were calculated in the tropospherically relevant conditions regarding their reactions with important atmospheric oxidants like Cl atom, OH and IO radicals. To complement experimental results, kinetics and thermochemistry for the title reactions were investigated theoretically via canonical variational transition state (CVT) theory in combination with small curvature tunnelling (SCT) corrections with a dual-level Interpolated Single Point Energy (ISPE) approach at the CCSD(T)/def2-QZVPP//M06-2X/def2-TZVPP level of theory/basis set in the temperatures between 200 and 400K. Good degree of agreement was encountered between experimentally measured and theoretically calculated rate coefficients. This article also discusses the thermochemical parameters and kinetic branching ratios (BRs) of all the pathways involved in the title reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.