Abstract

In this study, we have focused on studying the heterogenous degradation kinetics regarding the decomposition of the emergency contraceptive agent levonorgestrel (LNG), which is a second-generation synthetic progestogen that is the active component of the racemic mixture of norgestrel. The degradation processes of the active pharmaceutical ingredient (API) were compared with the ones obtained from a model system containing the API along with the excipients that are found in a commercialized pharmaceutical formulation in a mass ratio of 1:1 (LNGMIX), in order to observe if the excipients have a stabilizing or destabilizing effect on the degradation of this progestogen. To achieve this, the following investigational methods were used: FTIR (Fourier transform infrared) spectroscopy and thermal analysis (TG/DTG/DSC analysis). For the kinetic analysis, the data obtained from two main decomposition processes observed on the DTG curves were used and processed with a preliminary method, namely ASTM E698, and two isoconversional methods: Friedman and Flynn–Wall–Ozawa. The isoconversional study revealed that the decomposition mechanisms of both LNG and LNGMIX are complex, and the excipients have a stabilizing effect on the decomposition of the API in tablet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.