Abstract

NADH-dependent reduction of microsomal cytochrome P-450 has been analyzed kinetically by observing formation of the ferrous-carbonyl complex. Reduction is best described by two exponential equations with apparent first-order rate constants of 1.49 +/- 0.20 and 0.077 +/- 0.015 min-1. By either selective removal or inhibition of specific electron carriers, the kinetic data of minimally altered microsomes are further resolved into a third slow phase. Either addition of anti-cytochrome b5 immune globulin or reduction of cytochrome b5 with ascorbic acid markedly diminishes only the third phase. In reconstitution of purified flavoproteins, phospholipids, and a single isozymic form of cytochrome P-450, without cytochrome b5 only biphasic reduction of cytochrome P-450 is observed. Thus, microsomal cytochrome P-450 appears to be reduced via two independent pathways of electron transport from NADH; the biphasic reduction occurs via cytochrome P-450 reductase while the slower monophasic reduction occurs via cytochrome b5. Multiphasic reduction occurs via cytochrome b5. Multiphasic kinetics are not altered by in vivo inductions of different isozymes of cytochrome P-450. Accordingly, the rates of reduction appear to be an intrinsic property of the electron transport process and not directed by the heterogeneity of the isozymic mixture of ultimate electron acceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.