Abstract
The transesterification of propylene carbonate (PC) or ethylene carbonate (EC) to dimethyl carbonate (DMC) by using catalytic reactive distillation (RD) is a promising approach for carbon dioxide utilization. However, there is still scarcity of comprehensive comparison between the two RD processes. Hence, using the UNIQUAC model and kinetics calibrated by literature and our experiments, we conduct an extensive comparison of the two RD processes. Based on the kinetic insights, laboratory RD processes for both reactions are modeled, analyzed, and experimentally validated. Consequently, two RD processes designed to produce 60 ktpy of DMC are optimized and compared. The interplay and control factors between reaction and separation are elucidated and clarified via investigating variations of the actual chemical equilibrium constant profile compared with theoretical values along the reactive section at various pressures, liquid holdups, etc. The results reveal that the optimized EC RD process achieves almost 50 % reductions in both total annual cost and carbon dioxide emission compared to the PC RD process. This work facilitates the carbon neutrality and provides an essential guide for quantitatively assessing the two routes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.