Abstract

The nanostructured tungsten(VI) oxide (WO3)/cellulose derivatives (cellulose (CE) and triacetyl cellulose (TACE)) hybrid films were prepared by a solution-dipping adsorption process, and their structure and optical properties have been investigated. Various techniques, including adsorption isotherm, transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), in situUV-Vis absorption, and in situ total internal reflection Raman spectroscopy, were used for the characterization of the WO3/CE and WO3/TACE hybrid materials. Under UV irradiation, the photochromism (colorless → blue) was confirmed from the WO3/CE hybrid film, although no coloration of the WO3/TACE hybrid film was observed. This distinct difference in the coloration suggested that the interfacial interaction between hydroxyl groups present on the surface of the CE substrate and WO3 nanoparticlesviahydrogen bonding plays a major role in the enhancement of photochromism in the WO3/CE hybrid system. Moreover, the joint evidence in in situUV-Vis absorption and in situ total internal reflection Raman studies clearly revealed that the photogenerated coloration is related to a partial reduction of W6+ cations into W5+ cations in the WO3/CE hybrid film. The findings in this study have great implications for the development of the novel green-functional inorganic/organic hybrid materials in optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.