Abstract

Dimethyldodecylamine N-oxide (DDAO), a unique type of surfactant, shows high surface activity with two distinct energy states at the buried hydrophilic silica/aqueous solution interface studied by total internal reflection (TIR) Raman spectroscopy combined with ratiometric and kinetic analysis. Different from other types of surfactant, i.e., ionic and nonionic, the adsorption of DDAO demonstrates a specific critical surface aggregation concentration (csac) at 0.15 mM gives a complete surface coverage of 6.6 ± 0.3 μmol m-2, much lower than the bulk critical micellization concentration (cmc) at the same conditions (csac ≈ 0.072 cmc). A phase transition of adsorbed layers from liquid crystalline as the intermediate state to the disordered liquid phase is spectroscopically and energetically analyzed. The adsorption of DDAO on silica surfaces is described quantitatively in a potential energy curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.