Abstract

At high temperatures, isotope partitioning is often assumed to proceed under equilibrium and trends in the carbon isotope composition within graphite and diamond are used to deduce the redox state of their fluid source. However, kinetic isotope fractionation modifies fluid- or melt-precipitated mineral compositions when growth rates exceed rates of diffusive mixing. As carbon self-diffusion in graphite and diamond is exceptionally slow, this fractionation should be preserved. We have hence performed time series experiments that precipitate graphitic carbon through progressive oxidization of an initially CH4-dominated fluid. Stearic acid was thermally decomposed at 800°C and 2 kbar, yielding a reduced COH-fluid together with elemental carbon. Progressive hydrogen loss from the capsule caused CH4 to dissociate with time and elemental carbon to continuously precipitate. The newly formed C0, aggregating in globules, is constantly depleted by −6.2±0.3‰ in 13C relative to the methane, which defines a temperature dependent kinetic graphite-methane 13C/12C fractionation factor. Equilibrium fractionation would instead yield graphite heavier than the methane. In dynamic environments, kinetic isotope fractionation may control the carbon isotope composition of graphite or diamond, and, extended to nitrogen, could explain the positive correlation of δ13C and δ15N sometimes observed in coherent diamond growth zones. 13C enrichment trends in diamonds are then consistent with reduced deep fluids oxidizing upon their rise into the subcontinental lithosphere, methane constituting the main source of carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.