Abstract

Crowded solutions of multiarm star polymers, representing model colloidal spheres with ultrasoft repulsive interactions, undergo a reversible gelation transition upon heating in solvents of intermediate quality (between good and Theta). This unusual phenomenon is due to the kinetic arrest of the swollen interpenetrating spheres at high temperatures, forming clusters, in analogy to the colloidal glass transition. In this work we demonstrate that the choice of the solvent has a dramatic effect on the gelation transition, because of the different degree of star swelling (at the same temperature) associated with the solvent quality. We construct a generic kinetic phase diagram for the gelation of different stars in different solvents (gelation temperature against effective volume fraction, phi) and propose a critical "soft sphere close packing" volume fraction phi(c) distinguishing the temperature-induced (for phi<phi(c)) from the concentration-induced (for phi>phi(c)) glass-like gelation. We conclude that appropriate selection of the solvent allows for manipulation of the sol-gel transition in such ultrasoft colloids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.