Abstract

AbstractMiniemulsion polymerization involves initiation of polymerization in preformed stable monomer emulsion droplets with average droplet diameter of 50–500 nm. At the end of the polymerization, only a fraction of the initial number of monomer droplets become polymer particles. The emulsifier system used for the preparation of such emulsions comprises a mixture of ionic surfactant and a fatty alcohol or long chain alkane (termed cosurfactant). The cosurfactant is essential for the formation of stable emulsion droplets and in addition it plays an important role in the interparticle monomer transport.Kinetic results are presented on conventional emulsion and miniemulsion copolymerization of different pairs of monomers, showing the main differences for both processes. These differences were related to the particle formation mechanism and the influence of the cosurfactant in the miniemulsion process.A theoretical model was developed, based on mass balances and equilibrium thermodynamics, which was found to describe accurately the experimentally generated data on comonomer distribution during the course of the copolymerization process and the interdroplet mass transport process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.