Abstract
Abstract: The kinetic and mechanistic pathways of pyridine oxidation by peroxomonophosphate has been studied in an acidic aqueous medium. Reactions of peroxomonophosphoric acid are the least exploited kinetically. This reaction has been attempted to understand the role of oxidation of pyridine and the reactivity pattern of peroxomonophosphate. The reaction has been second order and First-order concerning the oxidant and substrate, respectively. The reaction rate showed a decreasing effect with increasing hydrogen ion concentration. Considering peroxomonophosphate reactions as non-chain reactions and all the results, a feasible mechanism for the reaction has been suggested. The calculated energy of activation and entropy of activation has been observed conventionally to be 80 ± 5 kJ mol-1 and – 45 ± 6 JK-1 mol-1. The oxidation product was pyridine-N-oxide in this reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.