Abstract

ABSTRACTThe aim of this study was to establish the bark of Eucalyptus tereticornis L. (EB) as a low cost bio-adsorbent for the removal of imidacloprid and atrazine from aqueous medium. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intra-particle diffusion (IPD) models were used to describe the kinetic data and rate constants were evaluated. Adsorption data was analysed using ten 2-, 3- and 4-parameter models viz. Freundlich, Jovanovic, Langmuir, Temkin, Koble–Corrigan, Redlich–Peterson, Sips, Toth, Radke–Prausnitz, and Fritz-Schluender isotherms. Six error functions were used to compute the best fit single component isotherm parameters by nonlinear regression analysis. The results showed that the sorption of atrazine was better explained by PSO model, whereas the sorption of imidacloprid followed the PFO kinetic model. Isotherm model optimization analysis suggested that the Freundlich along with Koble–Corrigan, Toth and Fritz-Schluender were the best models to predict atrazine and imidacloprid adsorption onto EB. Error analysis suggested that minimization of chi-square (χ2) error function provided the best determination of optimum parameter sets for all the isotherms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call