Abstract
Heavy metal Cr(VI) and organic BPA have posed harmful risks to human health, aquatic organisms and the ecosystem. In this work, Chitosan/bone/bamboo biochar beads (CS-AMCM) were synthesized by co-pyrolysis and in situ precipitation method. These microbeads featured a particle size of approximately 1 ± 0.2 mm and were rich in oxygen/nitrogen functional groups. CS-AMCM was characterized using XRD, Zeta potential, FTIR, etc. Experiments showed that adsorption processes of CS-AMCM on Cr(VI) and BPA fitted well to Langmuir model, with theoretical maximum capacities of 343.61 mg/g and 140.30 mg/g, respectively. Pore filling, electrostatic attraction, redox, complexation and ion exchange were the main mechanisms for Cr(VI), whereas for BPA, the intermolecular force (hydrogen bond) and pore filling were involved. CS-AMCM with adsorbed Cr(VI) demonstrated effective activation in producing ·OH and ·O2 from H2O2, which degraded BPA and Cr(VI) with the removal rates of 99.2% and 98.2%, respectively. CS-AMCM offers the advantages of low-cost, large adsorption capacity, high catalytic degradation efficiency, and favorable recycling in treating Cr(VI) and BPA mixed wastewater, which shows great potential in treating heavy metal and organic matter mixed pollution wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.