Abstract

The rate of spinodal decomposition depends on the spatial composition distribution. In order to estimate the time dependence of its rate experimentally, the structure change was investigated in Fe–30 at.% Cr and Fe–50 at.% Cr alloys aged at 748, 773, 798, and 823 K via small angle neutron scattering and a kinetic analysis of experimental data was carried out by using the Langer–Bar-on–Miller (LBM) theory. Their theory contains a rate term of a physical meaning similar to the diffusion coefficient. As a result, it becomes clear that the rate term corresponding to the diffusion coefficient decreases as decomposition advances and this fact can be explained by the modified LBM theory considering the composition-dependent mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.