Abstract

Degradation of formaldehyde with different initial concentration over titanium dioxide was carried out in a photocatalytic reactor. Photocatalytic rates were well described by the simplified Langmuir–Hinshelwood model. The kinetic analysis shows that the apparent first-order reaction coefficient is lower and half-life of photocatalysis is longer for low concentration than for high concentration formaldehyde. A network formation model of the photocatalytic products was established. Experimental results and analysis demonstrate that carbon dioxide concentration and carbon monoxide concentration in gas phase vary exponentially with the illumination time and may be even higher than gas-phase formaldehyde concentration if there is much pre-adsorbed formaldehyde in adsorption equilibrium on catalysts before illumination. Carbon monoxide is found to be one of the by-products during formaldehyde photooxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.