Abstract

NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae is an allosterically regulated enzyme that exists as an octamer composed of two nonidentical subunits, designated IDH1 and IDH2. To determine the contribution of each subunit to regulation and catalysis, a conserved serine residue at the proposed active site of each subunit was mutated to alanine. This mutation in IDH1 resulted in a 6-fold decrease in Vmax and a decrease in cooperativity, but little change in S0.5 for isocitrate. The mutant IDH2, in contrast, exhibited a 60-fold decrease in maximal velocity and a 2-fold reduction in S0.5 for isocitrate, but the cooperativity was unaffected. Responses to the allosteric modifier AMP also differed for the two mutant enzymes. The IDH1 mutant enzyme was not activated by AMP, whereas the IDH2 mutant enzyme exhibited an increase in isocitrate affinity in the presence of AMP similar to that observed with the wild-type enzyme. On the basis of these kinetic results, a model is presented which proposes that IDH1 functions as a regulatory subunit while IDH2 functions in catalysis. To determine if IDH1 or IDH2 alone is catalytically active, we also expressed the individual subunits in yeast strains in which the gene encoding the other subunit had been disrupted. Mitochondrial extracts from strains overexpressing solely IDH1 or IDH2 contained no detectable activity in the presence or absence of AMP. Gel filtration of these extracts showed that both IDH1 and IDH2 behaved as monomers, suggesting that the major subunit interactions within the octamer are between IDH1 and IDH2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.