Abstract

The serve is the most important stroke in tennis. It is a complex gesture consisting of numerous rotations with a wide amplitude, which are important to manage for performance. The aim of this study was to investigate whether correlations exist between joint kinematic parameters and racket velocity. A quantitative kinematics analysis of four ranked players (two boys and two girls) was carried out using an optoelectronic system composed of 10 cameras (150 Hz). Five flat serves per player were analyzed. Eighty-two markers were located across the 15 body segments and on the racket. A descriptive statistical analysis including a correlation analysis was carried out between joint angles and racket kinematic parameters (vertical position, velocity, and acceleration) during the cocking and acceleration phases. Ten very high (0.7 < r < 0.9) and three almost perfect (r > 0.9) correlations were found. Shoulder and hip axial rotations, knee flexion, and trunk extension were correlated linearly with racket vertical position and velocity during the cocking phase. For the acceleration phase, elbow flexion, trunk flexion/extension, and trunk axial rotation were linked to racket kinematics. Some of these parameters showed differences between slow and fast serves. These parameters, which are involved in transmitting ball velocity, are important to consider for tennis players and coaches in training programs, education, and performance enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.