Abstract

This paper proposes a general method for driving kinematics by distances and more specifically for controlling kinematically articulated systems. Unlike traditional approaches, the problem is addressed in the metric space using distances belonging to points of the skeleton and to the environment. After defining kinematic control through a distance-based formalization, we propose an optimization method for solving classic issues such as motion adaptation and inverse kinematics. The originality of the method lies in the possibility to introduce distance constraints with priorities. The approach is validated by a large variety of experiments in the field of motion control of articulated figures, and compared to other approaches by means of stability, convergence and performance issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.