Abstract

This paper shows that the design constraints of the Disturbance Observer (DOb) based robust motion control systems become stricter when they are implemented using computers or microcontrollers. The stricter design constraints put new upper bounds on the plant-model mismatch and the bandwidth of the DOb, thus limiting the achievable robustness against disturbances and the phase-lead effect in the inner-loop. Violating the design constraints may yield severe stability and performance issues in practice; therefore, they should be considered in tuning the control parameters of the robust motion controller. This paper also shows that continuous-time analysis methods fall-short in deriving the fundamental design constraints on the nominal plant model and the bandwidth of the digital DOb. Therefore, we may observe unexpected stability and performance issues when tuning the control parameters of the digital robust motion controllers in the continuous-time domain. To improve the robust stability and performance of the motion controllers, this paper explains the fundamental design constraints of the DOb by employing the generalised continuous and discrete Bode Integral Theorems in a unified framework. Simulation and experimental results are given to verify the proposed analysis method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.