Abstract
The kinematics and hydrodynamics of free-swimming larvae of Enallagma cyathigerum were investigated using videography combined with a simple wake visualisation technique (tracer dyes). Damsel-fly larvae are undulatory swimmers with two distinct styles of movement: 'slow' swimming, in which body undulation is assisted by paddling of the legs, and 'fast' swimming, in which the legs are inactive. In both cases, the wake consists of discrete ring vortices shed from the caudal fin at the end of each half-stroke. The vortices propagate away from the mid-line, alternately to one side of the body then the other, at an angle of 67 degrees from dead aft. There is no aft-flowing jet such as that observed in the wakes of continuously swimming fish that use caudal fin propulsion. The estimated momentum within the vortices, and the resultant thrust on the body are in tolerable agreement with calculations based on the large-amplitude bulk momentum model of fish locomotion. However, the drag on the body is not known, so it cannot be concluded with certainty that a force balance exists. The agreement between experiment and prediction gives confidence to the idea that most, if not all, of the vorticity generated by the swimming larva is located within the observable wake elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.