Abstract

Soft robots have many advantages over their rigid counterparts. These include their inherent compliance, lightweight and high adaptability to cluttered workspaces. Soft continuum robots, biologically inspired snake-like robots, are hyper-redundant and highly deformable. These robots can be challenging to control due to their complex kinematic and dynamic models. This paper presents a novel kinematic-model-free controller that uses a quasi-static assumption in order to control the tip-position of soft continuum robots with threadlike actuation while compensating for gravity simultaneously. The controller was tested on simulated continuum soft robots to demonstrate its ability to guide the tip while following a given trajectory. Novel kinematic-model-free control methods are introduced for soft robots' route and length control. The robustness of the controller is demonstrated with an actuator-failure test. The kinematic-model-free controller provides an adaptive control method for static, re-configuring, and growing soft continuum robots with threadlike actuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call