Abstract
Use of characteristics method integrated with cubic-spline interpolation technique (CSMOC scheme) for computation of one-dimensional and two-dimensional kinematic overland flow has been examined in this study. The characteristic trajectory is allowed to fall on space line and time line for interpolating the corresponding values at the foot of trajectory in terms of neighboring grid points. The effects of different endpoint constraints on use of cubic-spline interpolation are investigated. As far as accuracy and simplicity are concerned, the not-a-knot constraint could be a better choice. Three hypothetical examples are used to examine the capabilities of CSMOC scheme through the comparison with the analytical solution and the well-known Preissmann scheme. Some degrees of numerical diffusion and numerical oscillation, attenuating and overestimating the peak discharge, are induced by the Preissmann scheme. In contrast, the CSMOC scheme gives convincing results for the kinematic overland flow computations.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.