Abstract

Small jumping robots widely adopt complex catapult mechanisms. This paper presents a novel jumping strategy using dead point instead of traditional catapult mechanisms, achieving efficient energy storage and release without increasing mechanical complexity. Single degree-of-freedom (DOF) planar six-bar linkages are widely used in bionic mechanism design due to their simple control and strong design flexibility. However, their complex configuration and numerous parameters make it challenging to carry out multi-objective and multi-constraint designs. In this paper, a design method of single DOF six-bar linkages based on dead-point constraints is proposed to design a frog-inspired leg mechanism. By enumerating the basic configuration atlas and using a stepwise closed-loop method, initial value screening is completed to improve the efficiency of objective function optimization. The dead-point constraints are simplified with graphical geometric properties. The resulting mechanism satisfies multiple objectives and constraints, including shape, motion posture and trajectory, demonstrating the feasibility of the method. Simulations and experiments confirmed the excellent jumping performance of the 147.1-g prototype, with a jump height of 8.55 times leg length and an energy-storing capacity of 35.39 J/kg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.