Abstract

This paper has focused on the formulation of the biological fish propulsion mechanism given by Sir J. Lighthill mathematical slender body theory for a bio-inspired robotic fish. A 2-joint, 3-link multibody vehicle model biologically inspired by a body caudal fin (BCF) carangiform fish propulsion is designed. The objective is to investigate and show that a machine mimicking real fish behavior can navigate efficiently over a given distance with a good balance of speed and maneuverability. The robotic fish model (kinematics and dynamics) is integrated with the Lighthill (LH) mathematical model framework. Different mathematical propulsive waveforms are combined with an inverse kinematics-based approach for generating fish body motion. Comparative studies are undertaken among a non-LH model, a LH model, and the proposed propulsive wave models based on a distance-based performance index. Proposed LH cubic and NURB quadratic functions are found to be 16.32% and 17.94% efficient than a non-LH function, respectively. With the help of the simulation results, closed-loop experiments are done and an operating region is established for critical kinematic parameters tail-beat frequency and propulsive wavelength. The simulation and experimental plots are compared and found to be similar to the kinematic behavior study of the biological yellowfin tuna.

Highlights

  • Biomimetics [1] reflects the features and capabilities of the biological evolution [2] of a system that could be efficiently replicated or mimicked in a human engineered system to the design of new technologies and the improvement of conventional ones

  • While the kinematics study explains the geometry of the motion of robotic fish w.r.t, a fixed reference coordinate frame as a function of time, the dynamics of any rigid body [10,11,12] can be completely described by the translation of the centroid and the rotation of the body about its centroid

  • If we introduce a 2 degree of freedom (DOF) and the Lighthill quadratic wave function, it results into a planar body caudal fin (BCF) carangiform motion

Read more

Summary

Introduction

Biomimetics [1] reflects the features and capabilities of the biological evolution [2] of a system that could be efficiently replicated or mimicked in a human engineered system to the design of new technologies and the improvement of conventional ones. This approach has been proposed to be the answer to the improved performance and reliability for large scale complex systems by faster adaptation with dynamic environment. Comparative study of each model with the fundamental LH quadratic wave model is done for a performance parameter based on the total trajectory length

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.