Abstract

High-energy ball milling is a material-processing method promoting near-room temperature transformations of powder mixtures. Obtained products possess peculiar properties, otherwise difficult or impossible to obtain by using conventional methods. Powder transformation is promoted by energy releases from milling media to trapped powder and the mechanism strongly depends by mechanical characteristics of the milling device. Planetary and horizontal ball mills, attritors, 1D and 3D vibrating apparatus are well-known and utilized in this powder-processing technology. This paper is focused on a ZOZ Simoloyer CM01 horizontal ball milling apparatus; a kinematic model characterizing balls motion and energy released have been found. For the purpose, an experimental setup, based on digital image acquisition, has been constructed and ball trajectories have been caught by using a properly developed software. Using image analysis results, tangential and radial components of balls speed distribution have been assessed and kinetic energies of the impacting balls inside the milling vial have been evaluated. The obtained results permits to evaluate the energy released to the powder during the milling action and to infer some expected consequences on mechanically activated reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.