Abstract

There is a need for destructive technologies for per- and polyfluoroalkyl substances (PFAS) in soil. While planetary ball mill have been shown successful degradation of PFAS, there are issues surrounding scale up (maximum size is typically 0.5 L cylinders). While having lower energy outputs, horizontal ball mills, for which scale up is not a limiting factor, already exist at commercial/industrial sizes from the mining, metallurgic and agricultural industries, which could be re-purposed. This study evaluated the effectiveness of horizontal ball mills in degrading perfluorooctanesulfonate (PFOS), 6:2 fluorotelomer sulfonate (6:2 FTSA), and aqueous film forming foam (AFFF) spiked on nepheline syenite sand. Horizontal ball milling was also applied to two different soil types (sand dominant and clay dominant) collected from a firefighting training area (FFTA). Liquid chromatography tandem mass spectrometry was used to track 21 target PFAS throughout the milling process. High-resolution accurate mass spectrometry was also used to identify the presence and degradation of 19 non-target fluorotelomer substances, including 6:2 fluorotelomer sulfonamido betaine (FtSaB), 7:3 fluorotelomer betaine (FtB), and 6:2 fluorotelomer thioether amido sulfonate (FtTAoS). In the presence of potassium hydroxide (KOH), used as a co-milling reagent, PFOS, 6:2 FTSA, and the non-target fluorotelomer substances in the AFFF were found to undergo upwards of 81%, 97%, and 100% degradation, respectively. Despite the inherent added complexity associated with field soils, better PFAS degradation was observed on the FFTA soils over the spiked NSS, and more specifically, on the FFTA clay over the FFTA sand. These results held through scale-up, going from the 1 L to the 25 L cylinders. The results of this study support further scale-up in preparation for on-site pilot tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.