Abstract
In this paper, a nonlinear numerical technique is developed to calculate the plastic limit loads and failure modes of frictional materials by means of mathematical programming, limit analysis and the conventional displacement-based finite element method. The analysis is based on a general yield function which can take the form of the Mohr–Coulomb or Drucker–Prager criterion. By using an associated flow rule, a general nonlinear yield criterion can be directly introduced into the kinematic theorem of limit analysis without linearization. The plastic dissipation power can then be expressed in terms of kinematically admissible velocity fields and a nonlinear optimization formulation is obtained. The nonlinear formulation only has one constraint and requires considerably less computational effort than a linear programming formulation. The calculation is based entirely on kinematically admissible velocities without calculation of the stress field. The finite element formulation of kinematic limit analysis is developed and solved as a nonlinear mathematical programming problem subject to a single equality constraint. The objective function corresponds to the plastic dissipation power which is then minimized to give an upper bound to the true limit load. An effective, direct iterative algorithm for kinematic limit analysis is proposed in this paper to solve the resulting nonlinear mathematical programming problem. The effectiveness and efficiency of the proposed method have been illustrated through a number of numerical examples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have