Abstract

Abstract A new kinematic hardening model useful for simulating the steady-state in ratchetting is developed within the framework of the strain hardening and dynamic recovery format. The model is formulated to have two kinds of dynamic recovery terms, which operate at all times and only in a critical state, respectively. The model is examined on the basis of nonproportional experiments of Modified 9Cr–1Mo steel at 550°C and IN738LC at 850°C. The experiments include multiaxial, as well as uniaxial, ratchetting, multiaxial cyclic stress relaxation, and nonproportional cyclic straining along a butterfly-type strain path. It is shown that the model is successful in simulating the experiments, and that the model is featured by the capability of representing appropriately the steady-state in ratchetting under multiaxial and uniaxial cyclic loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call