Abstract

The traditional deep-water manipulators have several problems to work in confined spaces, such as large volume, complex structure, and inability. To solve these problems, a novel cable-driven snake-like manipulator robot for deep-water is proposed. In this study, the structure design of the cable-driven snake-like manipulator robot is first introduced. Then, we establish the kinematics model of the proposed cable-driven snake-like manipulator robot, which includes three parts: motor-cable kinematics, cable-joint kinematics, and joint-end kinematics. Especially, a tip-following algorithm (Supplemental Material) is presented to fit the confined and complicated underwater scenarios. Furthermore, a kinematics control strategy based on fuzzy PID controller is presented to reduce the tracking error caused by transmission mechanism, and the simulation of the cable-driven snake-like manipulator is carried out based on the MATLAB. The results demonstrate that the tracking error is less than 0.04 mm, which shows the proposed control strategy is effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call