Abstract

• A closed-from mathematical model for dynamics of the Gantry-Tau is derived. • Kinematics of the Gantry-Tau is formulated and singular conditions are discussed. • Simulation studies are carried out to assess the performance of the proposed models. This paper deals with the mathematical modeling of kinematics and dynamics of the 3-degrees-of-freedom Gantry-Tau manipulator. Compared to many other parallel robots, Gantry-Tau offers a large accessible workspace and high stiffness. The kinematics of Gantry-Tau is presented which includes inverse kinematics formulation for the position, velocity and acceleration of the mechanism. Also, based on the obtained Jacobin matrices, singular configurations of the robot are studied. Afterwards, the equations of the inverse dynamic model of the Gantry-Tau are obtained through two different methods, i.e., virtual work and Newton–Euler. Finally, a case study is performed to verify the correctness of the derived models and investigate their computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.