Abstract

In the paper, a novel 2-DOF (degree of freedom) plane translational parallel manipulator with passive universal joints and three legs is presented. Firstly, the 2-DOF translational parallel manipulator which has the spatial structure and high bearing capacity in the direction perpendicular to the kinematics plane is described. Then, the kinematics analysis of the 2-DOF parallel manipulator, which include inverse and forward solutions, are studied in detail, and the Jacobian matrix of the parallel manipulator is also derived based on it. Lastly, to improve the stability and bearing capacity further, the symmetric mechanisms with four legs and passive universal joints are constructed by adding a leg in parallel. The proposed 2-DOF parallel manipulator not only has the simple structure, but high stiffness especially in the direction perpendicular to kinematics plane for its spatial arrangment and passive universal joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.