Abstract

Excessive emission of anthropogenic CO2 has facilitated greenhouse effect since the industrialized and modernized society, causing serious problems to both environment and human society. To alleviate this, Al-promoted CaO-based solid sorbents were produced on kilogram scale per batch via a simple and facile co-precipitation technique, in which Al served as an inert support and achieved an improvement on CO2 sorption performance of the sorbents. Preparation conditions of the mass-produced sorbents were optimized, including Ca/Al molar ratio, precursor concentration of calcium, coprecipitating temperature and time, which acted as critical roles in co-precipitation process. A 6-kg sorbent powder with favorable CO2 capture performance has been synthesized successfully at one batch. In addition, pelletization of the kilogram-scale produced sorbent powder was also executed utilizing extrusion-spheronized granulation methods. And a typical binder material (pseudo-boehmite) with peptizing agent (nitric acid) was incorporated to ameliorate nano-porous structure and mechanical reliability of sorbent pellets. The sorbent pellets, fabricated using the kg-scale produced powder, displayed a final CO2 sorption capability of 5.4 mol-CO2/kg-ads and great anti-attrition resistance (0.14 wt%/h) after 30 adsorption/desorption cycles up to 40 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call