Abstract

Botrytis cinerea, a widespread plant pathogen with a necrotrophic lifestyle, causes gray mold disease in many crops. Massive secretion of enzymes and toxins was long considered to be the main driver of infection, but recent studies have uncovered a rich toolbox for B. cinerea pathogenicity. The emerging picture is of a multilayered infection process governed by the exchange of factors that collectively contribute to disease development. No plant shows complete resistance against B. cinerea, but pattern-triggered plant immune responses have the potential to significantly reduce disease progression, opening new possibilities for producing B. cinerea-tolerant plants. We examine current B. cinerea infection models, highlight knowledge gaps, and suggest directions for future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.