Abstract

AimsDespite its implication in various human cancers, the expression and functional significance of Kinesin family member 15 (KIF15) in chordomas remain unexplored. Main methodsThe evaluation of KIF15 protein levels was conducted through immunohistochemistry (IHC) staining and Western blot analysis. Cell proliferation was quantified using MTT and CCK8 assays, whereas cell migration was examined using wound healing and Transwell assays. Furthermore, flow cytometric analysis was utilized to assess cell apoptosis and the cell cycle. Additionally, in vivo experiments were performed using a mouse xenograft model. Key findingsOur study revealed significantly higher expression of KIF15 in stage III chordoma tissues compared to stage II tissues. Knockdown of KIF15 led to notable inhibition of cell proliferation and migration, along with enhanced apoptosis and cell cycle arrest. In vivo studies further confirmed the inhibitory effects of KIF15 knockdown on chordoma tumour growth. In terms of mechanism, we identified the involvement of the PI3K-AKT signalling pathway mediated by KIF15 in chordomas. Notably, the anti-tumour effects of KIF15 deficiency on chordomas were partially reversed by the addition of an AKT activator. SignificanceKIF15 promotes chordoma development and progression through the activation of the PI3K-AKT signalling pathway. Thus, targeting KIF15 might be a promising therapeutic strategy for treating chordomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.