Abstract

We want to study whether the degree of fibrosis in the mild and severe hydronephrosis is different, and whether the irrigation pressure will affect the fibrosis of the hydronephrosis. Animal models of mild and severe hydronephrosis in the left kidney were established: 72 healthy C57BL/6 mice were randomly divided into nine groups (eight in each group). The N group was used as a control group, and 0mmHg pressure perfusion was given. The M and S groups were used as mild and severe hydronephrosis groups, respectively. The mild and severe hydronephrosis groups were subdivided into eight subgroups, M0-M3 and S0-S3. Among them, groups 0, 1, 2, and 3 were perfused with 0mmHg, 20mmHg, 60mmHg, and 100mmHg, respectively. We investigated the effects of irrigation pressures on renal fibrosis in mild (group M) and heavy (group S) hydronephrosis by quantitative real-time polymerase chain reaction, Western blot analysis, Masson staining and immunohistochemistry staining in mouse models. Compared with group N, EMT and ECM deposits were significantly aggravated in both the mild and severe hydronephrosis groups, TGF-β signaling pathway-related molecules significantly changed too. In terms of ECM deposition, S2 and S3 are significantly increased compared to S0.The EMT of M2 and M3 changed significantly compared with M0; the EMT of S1, S2 and S3 changed significantly compared with S0.The molecules related to TGF-β signaling pathway also changed: M0 and S0 changed significantly compared with N; M1, M2 and M3 changed significantly compared with M0; compared with S0, S1, S2 and S3 changed significantly. Compared with mild hydronephrosis, renal fibrosis in severe hydronephrosis is more severe and its tolerance to perfusion pressure is lower. These changes may be related to the TGF-β signalling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.