Abstract

Previous studies have reported a complex relationship between inflammatory cytokines and kidney stone disease (KSD). The purpose of this paper is to investigate the potential causal impact of inflammatory cytokines on KSD by Mendelian randomization (MR) analysis. In our study, a thorough two-sample Mendelian randomization (MR) analysis was performed by us to determine the potential causal relationship between inflammatory cytokines and kidney stone disease. Utilizing GWAS summary data of inflammatory cytokines and KSD, we performed the first two-sample MR analysis. Genetic variants in GWASs related to inflammatory cytokines were employed as instrumental variables (IVs). The data on cytokines were derived from 14,824 participants and analyzed by utilizing the Olink Target-96 Inflammation Panel. GWAS summary data related to KSD (9713 cases and 366,693 controls) were obtained from the FinnGen consortium. The primary MR analysis method was Inverse variance weighted. Reverse MR analysis, Cochran's Q test, MR Egger, and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) were used to assess the stability of the results. 91 cytokines were enrolled in the MR analysis after strict quality control of IV. The IVW analysis revealed 2 cytokines as risk factors for KSD: Cystatin D (OR 1.06, 95% CI 1.01-1.11), Fibroblast growth factor 5 (OR 1.06, 95% CI 1.00-1.12), suggesting they are positively associated with the occurrence of kidney stones. We also found 3 protective associations between cytokines and KSD: Artemin (OR 0.86, 95% CI 0.78-0.96), T-cell surface glycoprotein CD6 isoform (OR 0.92, 95% CI 0.88-0.98), STAM-binding protein (OR 0.83, 95% CI 0.69-0.99). There was no horizontal pleiotropy or significant heterogeneity in our MR analysis, as determined by the p-value results of our MR Egger's intercept test, Cochrane Q-test, and MR-PRESSO, which were all > 0.05. Our study explored a variety of inflammatory cytokines related to KSD through MR analysis, which validated several previous findings and provided some new potential biomarkers for KSD. However, the findings require further investigation to validate their exact functions in the pathogenesis and evolution of KSD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call