Abstract

Noise radars have many advantages over conventional radars and receive great attentions recently. The waveforms and their characteristics of a noise radar are the crucial factors that impact the performance of this radar. Noise waveforms are usually generated by random number generators or logistic mapping. In this paper, we propose the kicked rotor quantum chaos perturbation (KRQCP) approach. First, we investigate the characteristics of noise waveforms generated by kicked rotor quantum chaos and demonstrate that like random number generation approach and logistic mapping approach, noise waveforms generated by kicked rotor quantum chaos (KRQC) also show the fractal relation between sidelobe values and code lengths. Then, we propose using KRQC noises to perturb quadratic phases and develop the KRQCP noise waveform generation method. We demonstrate that the performance for the noise waveforms generated by the new method is considerably higher than traditional random number generator and logistic mapping approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call