Abstract

Background and study aimsThe metabolism of dietary fructose by ketohexokinase (KHK) is an important step in glucose metabolism in various tumour types. However, the expression, function and underlying mechanisms of KHK in oesophageal squamous cell carcinoma (ESCC) remain largely unclear. The objective of this study was to investigate the effects of KHK-A, a peripheral isoform of KHK, on the proliferation of ESCC cell lines. Material and methodsThe function and mechanism of KHK-A in ESCC cells were investigated by constructing stable KHK-A-knockdown and -overexpressing ESCC cell lines (KYSE410 and KYSE150, respectively). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and colony formation assays were used to analyse the effects of KHK-A on cell proliferation, cell cycle and colony formation, respectively. KHK-A and phosphoribosyl pyrophosphate synthetase isoform 1 (PRPS1) mRNA and protein expressions in several ESCC cell lines were determined using routine reverse transcription-polymerase chain reaction and immunoblotting, respectively. KHK and PRPS1 expressions in ESCC tumour tissues and corresponding adjacent non-tumour tissues were evaluated according to the gene expression omnibus (GEO) database (GSE20347). ResultsIn vitro experiments showed that KHK-A significantly promoted cell proliferation by modulating the G1/S phase transition in the cell cycle, which was probably regulated by PRPS1 expression. GEO database-based analysis showed that KHK levels were significantly higher in the ESCC tissues than in the corresponding adjacent non-tumour tissues. Pearson’s correlation coefficient analysis showed that KHK expression in ESCC cell lines and tissues was significantly positively associated with the up-regulation of PRPS1, suggesting that KHK-A levels regulate PRPS1 expression in ESCC. ConclusionKHK-A may serve as a driving gene in ESCC for the activation of PRPS1, resulting in the up-regulation of PRPS1. This could lead to enhanced nucleic acid synthesis for tumourigenesis. Our study showed that KHK-A is a potential target for ESCC diagnosis and therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call