Abstract
The human activity introduces strong environmental stresses, and results in great spatiotemporal heterogeneity for the environment. Although the effects of environmental factors on the microbial diversity and succession have been widely studied, knowledge about how keystone taxa respond to environmental stresses remains poorly understood. We examined bacterial and archaeal communities from 45 wetland ponds covering a wide range of waters in Hangzhou. We found that shifts in bacterial and archaeal communities were strongly correlated with water pollution as indicated by the comprehensive water quality identification (CWQI). The SEGMENTED analysis suggested that there were non-linear responses of microbial communities and keystone taxa to the water pollution gradient. Moreover, these significant tipping points (e.g., CWQI > 4.0) would afford a warning line for urban wetland management. Notably, keystone taxa of bacterial communities could be used to successfully (~88.9% accuracy) predict water contamination levels. This study provides new insights into the potential for keystone bacterial taxa to predict water contamination.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have