Abstract
Summary form only given. The major obstacle to use multicores for real-time applications is that we may not predict and provide any guarantee on real-time properties of embedded software on such platforms; the way of handling the on-chip shared resources such as L2 cache may have a significant impact on the timing predictability. In this talk, we propose to use cache space isolation techniques to avoid cache contention for hard real-time tasks running on multicores with shared caches. We present a scheduling strategy for real-time tasks with both timing and cache space constraints, which allows each task to use a fixed number of cache partitions, and makes sure that at any time a cache partition is occupied by at most one running task. In this way, the cache spaces of tasks are isolated at run-time. As technical contributions, we present solutions for the scheduling analysis problem. For simplicity, the presentation will focus on non-preemptive fixed-priority scheduling. However, our techniques can be easily adapted to deal with other scheduling strategies like EDF. We have developed a sufficient schedulability test for non-preemptive fixed-priority scheduling for multicores with shared L2 cache, encoded as a linear programming problem. To improve the scalability of the test, we then develop our second schedulability test of quadratic complexity, which is an over approximation of the first test. To evaluate the performance and scalability of our techniques, we use randomly generated task sets. Our experiments show that the first test which employs an LP solver can easily handle task sets with thousands of tasks in minutes using a desktop computer. It is also shown that the second test is comparable with the first one in terms of precision, but scales much better due to its low complexity, and is therefore a good candidate for efficient schedulability tests in the design loop for embedded systems or as an on-line test for admission control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.