Abstract
AbstractIn the Mountains of Southwest China (MSC), accelerated diversification triggered by mountain uplift and monsoon intensification in the Miocene is widely revealed, but less is known about the stage after the Pliocene. Thus, the tempo‐spatial evolution of the endemism of Gaoligong Shan (GLGS), a young and isolated mountain with the highest biodiversity in the MSC, was determined. Temporal patterns were inferred by the stem ages of the endemic species and spatial patterns were inferred through ancestral area reconstructions and the distributions of the sister taxa. Temporally, the calibrated origin times of 114 phylogenetically well resolved endemic species (75 plants, 33 animals and six fungi) ranged from the early Miocene to the Holecene. Spatially, 82 centric origin species (mean = 3.08 Ma) were significantly younger than 32 eccentric origin species (6.84 Ma). Eccentric origins accumulated smoothly while centric origins burst after the late Pliocene, especially after the Pleistocene (n = 52). In centric origins, most of the sister taxa showed sympatric (n = 47) or allopatric (n = 23) distributions in the GLGS. The eccentric origins were mainly dispersed from the southern lower latitude region (n = 20). Principle component analysis indicated that niche conservatism exerted greater contribution to the speciation of the endemic species. Uplift of the GLGS and monsoon intensification during the late Pliocene accelerated the formation of its endemism. The “Species pump” effect of the Pleistocene climatic fluctuations is further revealed. Speciation triggered by geological isolation by mountain and river barriers through niche conservatism exceeds adaptive evolution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have